1 Energienutzung

Detaillierte Lernziele:
□ Ich kann den Begriff <i>Energie</i> erklären.
□ Ich kann sechs verschiedene <i>Energieformen</i> aufzählen.
□ Ich kann drei erneuerbare und drei nicht erneuerbare <i>Energieträger</i> aufzählen.
□ Ich kenne die vier <i>Spannungsebenen</i> inklusive deren Spannungen z.B. 220 kV.
$\hfill \square$ Ich kann die Elektrizitätsversorgung (vom Stausee bis zum Verbraucher) skizzieren.
□ Ich kann den <i>Energieerhaltungssatz</i> beschreiben.
☐ Ich kann Maschinen und Geräte den <i>Energieumwandlungen</i> zuordnen. (z.B. Eine Elektroheizung wandelt elektrische Energie in thermische Energie um.)
□ Ich kann je drei Vor- und Nachteile der <i>elektrischen Energie</i> aufzählen.
□ Ich kann den Begriff <i>Arbeit</i> erklären.
☐ Ich kenne die drei gebräuchlichen Masseinheiten der Energie rsp. Arbeit.
$\hfill \square$ Ich kann die Kilowattstunde in Newtonmeter, Wattsekunde und Joule umrechnen.
□ Ich kann einen Motorenwirkungsgrad von z.B. 87 % erklären.
☐ Ich kenne die zwei üblichen Schreibweisen für den Wirkungsgrad. (als Dezimalzahl und als Prozentangabe)
□ Ich kann Wirkungsgrade von zwei verschiedenen Geräten nennen.
☐ Ich kann den Unterschied zwischen Arbeit und Leistung erklären.
☐ Ich kenne die Masseinheit der <i>Leistung</i> .
□ Ich kann den Begriff Bemessungsleistung (= Nennleistung) erklären.
☐ Ich weiss, bei welchen Geräten und Apparaten die <i>Bemessungsleistung</i> der <i>aufgenommenen</i> Leistung entspricht.
☐ Ich weiss, bei welchen Geräten und Apparaten die <i>Bemessungsleistung</i> der <i>abgegebenen</i> Leistung entspricht.
☐ Ich kann Berechnungen zum <i>Wirkungsgrad</i> fehlerfrei durchführen. (⇒ Lernkontrolle)
 □ Ich kann Berechnungen zur <i>Leistung</i> fehlerfrei durchführen. (⇒ Lernkontrolle)
 □ Ich kann Berechnungen zu den <i>Energiekosten</i> fehlerfrei durchführen. (⇒ Lernkontrolle)
□ usw.

1.1 Lernkontrolle: Energienutzung

1.1 Aufgabe ✓ 3 Pkt.

Welche 3 Vorteile hat die elektrische Energie gegenüber den anderen Energiearten?

1.2 Aufgabe ✓ 4 Pkt.

Erklären Sie die beiden Begriffe a) Arbeit und b) Energie.

1.3 Aufgabe ✓ 2 Pkt.

Wie lautet der Energieerhaltungssatz?

1.4 Aufgabe ✓ 1 Pkt.

Nennen Sie ein Gerät, welches Strahlungsenergie in elektrische Energie umwandelt.

1.5 Aufgabe ✓ 2 Pkt.

Rechnen Sie 4.5 kWh in Wattsekunden um.

1.6 Aufgabe ✓ 2 Pkt.

Die Verluste in der Druckleitung eines Hochdruckkraftwerkes betragen exakt 5 %. Der Turbinen- und der Generatorwirkungsgrad beträgt $\eta_T = 0.88$ rsp. $\eta_G = 0.92$. Bestimmen Sie den Gesamtwirkungsgrad η der Anlage.

1.7 Aufgabe 2 Pkt.

Ein Heizkörper hat eine Bemessungsleistung von 3500 W. Wie gross ist die an den Raum abgegebene Energie nach 4 h, wenn der Heizkörper einen Wirkungsgrad von 62 % hat?

1.8 Aufgabe ✓ 4 Pkt.

Wie gross sind a) der Wirkungsgrad und b) der Leistungsverlust eines Universalmotors, der die elektrische Leistung $P_{\rm zu}=10\,{\rm kW}$ aufnimmt und an der Welle die mechanische Leistung $P_{\rm ab}=5.75\,{\rm kW}$ abgibt?

1.9 Aufgabe ✓ 6 Pkt.

Eine Spielkonsole mit $P_1 = 80$ W und ein Radiogerät mit $P_2 = 35$ W sind gleichzeitig 1 h 50 min lang eingeschaltet.

- a) Berechnen Sie die elektrische Arbeit W, die in dieser Zeit verrichtet wird.
- b) Was muss für die Energie bezahlt werden, wenn der Energietarif 23 Rp./kWh beträgt?
- c) Nach welcher Zeit t_1 haben beide Geräte zusammen 1 kWh umgesetzt?

Richtzeit: 15 min maximale Punktzahl: 26 Pkt.

26-24 Pkt: sehr gut 23.5-20 Pkt: gut 19.5-16 Pkt: genügend < 16 Pkt: ungenügend

1.2 Lernkontrolle Lösungen: Energienutzung

1.1 Lösung

sie lässt sich gut transportieren; sie lässt sich leicht in andere Energieformen umwandeln; sie ist umweltfreundlich beim Verbraucher (je 1 Pkt.)

1.2 Lösung

- a) Arbeit wird verrichtet, wenn ein Körper durch eine Kraft bewegt oder verformt wird. Arbeit ist ein Vorgang. (2 Pkt.)
- b) Energie hat die Fähigkeit mechanische Arbeit zu verrichten, sowie Wärme und Strahlung (z.B. Licht) auszusenden. Energie ist ein Zustand. (2 Pkt.)

1.3 Lösung

Energie kann weder erzeugt noch vernichtet werden. Sie lässt sich nur von einer Form in eine andere umwandeln. (2 Pkt.)

1.4 Lösung

Solarzelle (1 Pkt.)

1.5 Lösung

$$4.5 \,\text{kWh} \cdot \frac{3600000 \,\text{Ws}}{\text{kWh}} = \underbrace{\frac{16200000 \,\text{Ws} = 16.2 \cdot 10^6 \,\text{Ws}}{\text{kWh}}}_{\text{kWh}} \quad (2 \,\text{Pkt.})$$

1.6 Lösung

$$\eta = \eta_{\rm L} \cdot \eta_{\rm T} \cdot \eta_{\rm G} = 0.95 \cdot 0.88 \cdot 0.92 = \underline{0.769 = 76.9\%}$$
 (2 Pkt.)

1.7 Lösung

$$W = P \cdot t = 3.5 \,\text{kW} \cdot 4 \,\text{h} = \underline{14 \,\text{kWh}} \quad (2 \,\text{Pkt.})$$

1.8 Lösung

a)
$$\eta = \frac{P_{ab}}{P_{rv}} = \frac{5.75 \text{ kW}}{10 \text{ kW}} = \underbrace{\frac{0.575 = 57.5 \%}{10 \text{ kW}}}$$
 (2 Pkt.)

b)
$$P_{V} = P_{zu} - P_{ab} = 10 \text{ kW} - 5.75 \text{ kW} = \underline{4.25 \text{ kW}}$$
 (2 Pkt.)

1.9 Lösung

$$t = 1 \text{ h} 50 \text{ min} = 1 \text{ h} + \frac{5}{6} \text{ h} = \underline{1.83 \text{ h}}$$
 (1 Pkt.)

a)
$$W = (P_1 + P_2) \cdot t = (80 \text{ W} + 35 \text{ W}) \cdot 1.83 \text{ h} = \underline{0.21 \text{ kWh}}$$
 (1 Pkt.)

b)
$$K = W \cdot T = 0.21 \text{ kWh} \cdot 23 \frac{\text{Rp.}}{\text{kWh}} = \underbrace{4.83 \text{ Rp.}}_{\text{EV}} = \underbrace{5 \text{ Rp.}}_{\text{EV}}$$
 (2 Pkt.)

c)
$$t_1 = \frac{W}{P} = \frac{1 \text{ kWh}}{0.115 \text{ kW}} = \underbrace{\frac{8.70 \text{ h} = 8 \text{ h} 42 \text{ min}}{0.115 \text{ kW}}}$$
 (2 Pkt.)