3 Elektrische Stromstärke

Detaillierte Lernziele:
☐ Ich kann die Begriffe <i>Leiter</i> und <i>Nichtleiter</i> erläutern.
□ Ich kann je mindestens vier elektrische <i>Leiter</i> und <i>Nichtleiter</i> aufzählen.
□ Ich kann den Begriff <i>Halbleiter</i> erklären.
□ Ich kann den Begriff <i>Elektrolyt</i> erläutern.
$\hfill \square$ Ich kenne drei verschieden e $Halbleitermaterialien$ (inkl. chemische Abkürzung).
☐ Ich kann den Unterschied zwischen der <i>technischen</i> und der <i>physikalischen Strom-richtung</i> wiedergeben.
☐ Ich kann die fünf <i>Wirkungen des elektrischen Stromes</i> inklusive je einer erwünschten und unerwünschten Anwendung aufzählen.
☐ Ich weiss, welche <i>Stromwirkungen</i> immer auftreten, wenn Strom fliesst.
☐ Ich kann einen Gleich- und einen Wechselstrom skizzieren.
□ Ich kann zwei Einrichtungen aufzählen, die <i>Gleichspannung</i> erzeugen.
$\hfill \square$ Ich kann drei Anwendungen aufzählen, welche mit Wechselstrom betrieben werden.
$\hfill\Box$ Ich kenne die Frequenz und die Periodendauer unseres Stromnetzes.
\square Ich verstehe die Bedeutung der beiden Abkürzungen AC und DC .
□ Ich kann erklären, was die Bezeichnung <i>Stromdichte</i> bedeutet.
□ Ich kann die Auswirkungen einer zu grossen <i>Stromdichte</i> erläutern.
☐ Ich kenne das Schaltzeichen eines <i>Amperemeters</i> .
$\hfill \square$ Ich kann einen einfachen Stromkreis mit integriertem Amperemeter aufzeichnen.
☐ Ich weiss, wie man ein <i>Amperemeter</i> in den Stromkreis schaltet.
□ Ich kann Berechnungen zur <i>Stromstärke</i> und <i>Ladung</i> fehlerfrei durchführen. (⇒ Lernkontrolle)
 □ Ich kann Berechnungen zur Stromdichte fehlerfrei durchführen. (⇒ Lernkontrolle)
□ usw.

3.1 Lernkontrolle: Elektrische Stromstärke

3.1 Aufgabe ✓ 2 Pkt.

Nennen Sie je vier Beispiele für Leiter und Nichtleiter.

3.2 Aufgabe √ 1 Pkt.

Welche Wirkung tritt beim Anziehen eines Relais oder Schützen in Erscheinung?

3.3 Aufgabe ✓ 2 Pkt.

Wo wird die Wirkung auf Lebewesen (physiologische Wirkung) des Stromes sinnvoll angewendet? Nennen Sie mindestens zwei Beispiele.

3.4 Aufgabe ✓ 2 Pkt.

In den Adern eines Kabels treten bestimmte Wirkungen immer unerwünscht auf. Um welche Wirkungen handelt es sich dabei?

3.5 Aufgabe ✓ 2 Pkt.

Wie gross sind a) die Frequenz und b) die Periodendauer unseres Stromnetzes?

3.6 Aufgabe ✓ 1 Pkt.

Wie muss man Amperemeter in einen Stromkreis schalten?

3.7 Aufgabe ✓ 2 Pkt.

Welche Wirkung hat eine hohe Stromdichte in einem Leiter?

3.8 Aufgabe 2 Pkt.

In welcher Zeit fliesst durch eine Halogenlampe bei der Stromstärke 0.4 A die Ladung 10 As? Geben Sie die Zeit in Sekunden an.

3.9 Aufgabe 3 Pkt.

Die Wicklungen eines Elektromotors besteht aus isoliertem Kupferrunddraht mit 1.2 mm Durchmesser. Die Stromdichte soll 6 A/mm² nicht überschreiten.

- a) Berechnen Sie den kreisförmigen Leiterquerschnitt A.
- b) Wie gross ist die zulässige Stromstärke *I*?

3.10 Aufgabe 3 Pkt.

Durch einen runden Heizdraht eines Wandboilers fliesst ein Strom von I = 9 A. Die Stromdichte beträgt J = 45 A/mm².

- a) Welchen Leiterquerschnitt A hat der Heizdraht?
- b) Welchen Durchmesser d hat der Heizdraht?

Richtzeit: 20 min maximale Punktzahl: 20 Pkt.

20-19 Pkt: sehr gut 18.5-16 Pkt: gut 15.5-12 Pkt: genügend <12 Pkt: ungenügend

3.2 Lernkontrolle Lösungen: Elektrische Stromstärke

3.1 Lösung

Leiter: Kupfer, Aluminium, Gold, Eisen, Kohle, Silber (insgesamt 1 Pkt.)
Nichtleiter: Kunststoffe, Glas, Porzellan, PVC, Gummi, Luft (insgesamt 1 Pkt.)

3.2 Lösung

die magnetische Wirkung (1 Pkt.)

3.3 Lösung

Elektroschock, Herzschrittmacher, (Elektrotherapie, Weidezäune) (je 1 Pkt.)

3.4 Lösung

um die Wärmewirkung und um die magnetische Wirkung (je 1 Pkt.)

3.5 Lösung

a)
$$f = 50 \,\text{Hz}$$
 und b) $T = 20 \,\text{ms}$ (je 1 Pkt.)

3.6 Lösung

Amperemeter sind immer in die Leitung, d.h. seriell zum Verbraucher zu schalten. (1 Pkt.)

3.7 Lösung

Der Leiter erwärmt sich stark. Dadurch kann die Isolation Schaden nehmen. (2 Pkt.)

3.8 Lösung

$$t = \frac{Q}{I} = \frac{10 \text{ As}}{0.4 \text{ A}} = \frac{25 \text{ s}}{2000}$$
 (2 Pkt.)

3.9 Lösung

a)
$$A = \frac{d^2 \cdot \pi}{4} = \frac{(1.2 \text{ mm})^2 \cdot \pi}{4} = \underline{1.13 \text{ mm}^2}$$
 (1.5 Pkt.)

b)
$$I = J \cdot A = 6 \frac{A}{\text{mm}^2} \cdot 1.13 \text{ mm}^2 = \underbrace{6.78 \text{ A}}_{} (1.5 \text{ Pkt.})$$

3.10 Lösung

a)
$$A = \frac{I}{J} = \frac{9 \,\text{A} \cdot \text{mm}^2}{45 \,\text{A}} = \underbrace{\frac{0.2 \,\text{mm}^2}{1.5 \,\text{Pkt.}}}$$
 (1.5 Pkt.)

b)
$$d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 0.2 \,\text{mm}^2}{\pi}} = \underline{0.50 \,\text{mm}}$$
 (1.5 Pkt.)