11 Spannungsteiler

Detaillierte Lernziele:
□ Ich kann einen <i>unbelasteten Spannungsteiler</i> aufzeichnen.
☐ Ich weiss, nach welchen Regeln der <i>unbelastete Spannungsteiler</i> berechnet wird.
□ Ich kann einen <i>belasteten Spannungsteiler</i> aufzeichnen.
□ Ich weiss, nach welchen Regeln der <i>belastete Spannungsteiler</i> berechnet wird.
□ Ich kann zwei Anwendungsbeispiele eines <i>Potentiometers</i> aufzählen.
☐ Ich kann beschreiben, wie sich die Spannung am Ausgang eines <i>Spannungsteilers</i> bei steigender Belastung verhält.
 □ Ich kann Berechnungen zum unbelasteten Spannungsteiler fehlerfrei durchführen. (⇒ Lernkontrolle)
 □ Ich kann Berechnungen zum belasteten Spannungsteiler fehlerfrei durchführen. (⇒ Lernkontrolle)
□ usw.

11.1 Lernkontrolle: Spannungsteiler

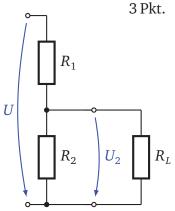
11.1 Aufgabe ✓ 2 Pkt.

Nennen Sie zwei Anwendungen eines Potentiometers!

11.2 Aufgabe ✓ 2 Pkt.

Wie verhält sich die Spannung am Ausgang eines belasteten Spannungsteilers, wenn die Belastung erhöht wird?

11.3 Aufgabe 2 Pkt.


Ein unbelasteter Spannungsteiler hat die Werte $R_1 = 1.5 \,\mathrm{k}\Omega$, $R_2 = 4.5 \,\mathrm{k}\Omega$ und wird an die Gesamtspannung $U = 120 \,\mathrm{V}$ angeschlossen.

- a) Zeichnen Sie die Schaltung auf.
- b) Welche Stromstärke I fliesst durch die beiden Widerstände R_1 und R_2 ?
- c) Berechnen Sie die Spannung U_2 über dem Widerstand R_2 .

11.4 Aufgabe

Der Spannungsteiler mit den Widerständen $R_1=30\,\mathrm{k}\Omega$, $R_2=12\,\mathrm{k}\Omega$ und $R_L=18\,\mathrm{k}\Omega$ liegt an $U=75\,\mathrm{V}$.

- a) Wie gross ist der Widerstand R_{2L} der Parallelschaltung aus R_2 und R_L ?
- b) Welche Gesamtstromstärke *I* nimmt der belastete Spannungsteiler auf?
- c) Wie gross ist die Spannung U_2 am Widerstand R_L ?

11.5 Aufgabe ✓ 6 Pkt.

Zwei Widerstände $R_1 = 20 \Omega$ und $R_2 = 47 \Omega$ sind in Reihenschaltung als Spannungsteiler an 12 V Gleichspannung angeschlossen.

- a) Wie gross sind die beiden Teilspannungen U_1 und U_2 ohne Belastung?
- b) Wie gross wird die Spannung U_1 , wenn dem Widerstand R_1 ein Belastungswiderstand von 150 Ω parallel geschaltet wird?

Richtzeit: 25 min maximale Punktzahl: 15 Pkt.

15-13 Pkt: sehr gut 12.5-11 Pkt: gut 10.5-9 Pkt: genügend < 9 Pkt: ungenügend

11.2 Lernkontrolle Lösungen: Spannungsteiler

11.1 Lösung

Helligkeitseinstellung eines Lichtdimmers, Zeit- und Helligkeitseinstellung bei einem Bewegungsmelder (PIR), Lautstärkeeinstellung bei (älteren) Radios, Lautstärkeeinstellung bei E-Gitarren usw. (je 1 Pkt.)

11.2 Lösung

Bei Belastung wird die Spannung am Ausgang kleiner. Sie fällt zusammen. (2 Pkt.)

11.3 Lösung

b)
$$I = \frac{U}{R_1 + R_2} = \frac{120 \text{ V}}{1500 \Omega + 4500 \Omega} = \underline{20 \text{ mA}}$$
 (1 Pkt.)

c)
$$U_2 = R_2 \cdot I = 4500 \,\Omega \cdot 0.02 \,A = \underline{90 \,V}$$
 (1 Pkt.)

11.4 Lösung

$$R_{2L} = \frac{R_2 \cdot R_L}{R_2 + R_L} = \frac{12 \,\mathrm{k}\Omega \cdot 18 \,\mathrm{k}\Omega}{12 \,\mathrm{k}\Omega + 18 \,\mathrm{k}\Omega} = \underline{7.2 \,\mathrm{k}\Omega} \quad (1 \,\mathrm{Pkt.})$$

$$I = \frac{U}{R_1 + R_{2I}} = \frac{75 \text{ V}}{30 \text{ k}\Omega + 7.2 \text{ k}\Omega} = \underline{2.02 \text{ mA}} \quad (1 \text{ Pkt.})$$

$$U_2 = R_{2L} \cdot I = 7.2 \,\mathrm{k}\Omega \cdot 2.02 \,\mathrm{mA} = \underline{14.5 \,\mathrm{V}}$$
 (1 Pkt.)

11.5 Lösung

a)
$$I = \frac{U}{R_1 + R_2} = \frac{12 \text{ V}}{20 \Omega + 47 \Omega} = \underline{179 \text{ mA}}$$

 $U_1 = R_1 \cdot I = 20 \Omega \cdot 179 \text{ mA} = \underline{\underline{3.58 \text{ V}}}$ $U_2 = R_2 \cdot I = 47 \Omega \cdot 179 \text{ mA} = \underline{\underline{8.42 \text{ V}}}$

b)
$$R_{1L} = \frac{R_1 \cdot R_L}{R_1 + R_L} = \frac{20 \,\Omega \cdot 150 \,\Omega}{20 \,\Omega + 150 \,\Omega} = \underline{17.6 \,\Omega}$$

$$I = \frac{U}{R_2 + R_{1L}} = \frac{12 \,\text{V}}{47 \,\Omega + 17.6 \,\Omega} = \underline{186 \,\text{mA}} \qquad U_1 = R_{1L} \cdot I = 17.6 \,\Omega \cdot 186 \,\text{mA} = \underline{\underline{3.27 \,\text{V}}}$$

(pro korrekter Rechenschritt 1 Pkt.)